122

COMPUTE!

per/Cacen

Interfacing
The Am9511]
Arithmetic
Processing
Unit

Marvin L. De Jon

Deparment of Mathematics-Physics
The School of the Ozarks

Pt. Lookout, MO 65726

Introduction
If you are interested in a hardware solution to the
problem of addition, subtraction, multiplication, divi-
sion, and functions such as sine, cosine, tangent,
square root, exponential, logarithm and their inverse
functions, then the Am9511 integrated circuit will be
of interest to you. The Am9511 Arithmetic Process-
ing Unit is a product of Advanced Micro Devices
Inc., 901 Thompson Place, Sunnyvale, CA 94086. It
performs signed multiplication, addition, subtraction
and division with either 16-bit integers or 32-bit in-
tegers, in twos complement form. It also does these
operations and evaluates a variety of functions (men-
tioned above) in a 32-bit floating point form. In the
floating point form, the mantissa of the number is
represented by 24 bits {equivalent to approximately
seven significant decimal digits). The exponent is
represented by six bits and a sign bit, giving a range
of numbers that can be represented from roughly
10719 t0 10 + 19, The one bit not accounted for so far
is the sign of the mantissa. Thus, the Am9511 should
satisfy most of the calculating needs of microcom-
puter users. It is important to point out that the
Am9511 is a binary device as opposed to a BCD
device. If you intend to use it like a calculator, then
appropriate BCD-to-binary and binary-to-BCD
routines will be needed to input and output numbers.
Timing of the various control pins on the
Am9511 is one of the most important considerations
in constructing an interface between it at the
microprocessor. The timing requirements seem to be
more relaxed in the most recent specification sheets,
but my original specifications were quite complex.
Perhaps it would be easy to interface the Am9511
somewhere in the address space, using address lines
and control lines to operate it. However, given the
complexities of the original timing diagrams, we used

an interface adapter (the 6522, although any of the
other popular interface adapters such as the 6530 can
also be used with our programs). One port is used
for data transfers, while several pins of the other port
on the interface adapter is used to control the
Am9511. These techniques produce an extremely
simple interface at the expense of some overhead in
software,

Before proceeding to the details of the circuit
and the driver programs it should be pointed out that
if you are interested in building and using this or
some other circuit that uses the Am9511, you will
want to get complete specification sheets, a publica-
tion called “‘Algorithm Details for the Am9511
Arithmetic Processing Unit,”” and a card-type
Am9511 reference card. All three of these publica-
tions are available from Advanced Micro Devices.
The Am9511 itself costs about $200, a number which
may cause you to turn to the next article. A few mail
order houses such as Advanced Computer Products
are beginning to list the chip in their advertisements.
Be sure to request all the literature mentioned above
because you will need it to know how to use the
chip. Space does not permit us to write a complete
description of all the features of the chip.

The Am9511 Interface Circuit

The interface circuit is given in Figure 1. It is very
simple because the complexity is absorbed in the soft-
ware that must accompany this circuit. As noted, any
6502 system such as the SUPERKIM, KIM-1, AIM
63, etc., may be used, and any two-port interface
adapter can be used. Be sure to include the 0.01
microfarad bypass capacitors, keep the leads between
the Am9511 and the microcomputer short, and tie
the unused control inputs (EACK and SVACK) w
logic one as shown in Figure 1. I will not reveal how
many hours of grief the failure to follow these stan-
dard procedures cost me. Keep it simple, neat, and
don’t try any shortcuts. Also follow the usual pro-
cedures in handling integrated circuits that are
susceptible to damage by static discharge. This 1s not
your typical ElI Cheapo IC: $200 makes it ir-
replaceable. Avoid any Benjamin Franklin type ex-
periments.

The Driver Subroutines

Listing 1 gives five subroutines that work with the in-

terface circuit in Figure 1 to operate the Am9511.

The subroutines are:

1. RESET - A subroutine that is used to reset
the Am9511 either after power is applied or to
clear the Am9511 to a known condition. This
subroutine must be called after power-up and
before using the Am9511.

2. WRITE - This subroutine transfers a byte of
data in the accumnulator of the 6502 to the stack
of the Am9511.

3. COMMAND - A subroutine that transfers an

eight-bit command word from the accumulator

124

COMPUTE!

of the 6502 to the command register of the
Am9511.

4. READ - Subroutine READ takes one byte of data
{part of the answer) from the stack of the
Am9511 and returns it to the X - register in
the 6502.

5. STATUS - This subroutine reads the status
register of the Am9311 and transfers its contents
to the X - register in the 6502.

The comments in the various subroutines should be
studied in connection with the Am9511 specification
sheets to understand the functions of the various in-
structions. We only note here that each of the access
subroutines, WRITE, COMMAND, READ, and
STATUS, wait for the Am9511 to signal that an
operation is complete when its PAUSE pin returns to
logic one.

We will describe a few operations with the
Am9511 to illustrate how the subroutines work.
Refer to the literature mentioned previously for more
details on the stack operation. The Am9511 stack
may be regarded either as an eight-level, 16-bit wide
stack, or as a four-level, 32-bit wide stack. Writing
once to the Am9511 places an 8-bit word on the
stack. However, since all of the “‘words’’ operated
on by the Am9511 are either 16 bits or 32 bits wide,
you must write at least 16 data bits (two bytes) to fill
a 16-bit stack location. You must write four bytes to
fill a 32-bit stack location. The last level filled (either
16 bits or 32 bits wide) is called TOS {acronym for
top of stack). The level filled previously is referred to
as NOS (next on stack).

An example will clarify the operation of the
stack. Suppose we wish to add two 16-bit integers
(they must be in twos complement form). Using the
WRITE subroutine, we write the least-significant
byte of one of the numbers to the Am9511 stack.
Call this byte B1. Next we write B2, the most-
significant byte of the same integer, to the Am9511,
This puts a 16-bit integer onto TOS, the top level of
the stack. The other addend, call it Al and A2 for
the least-significant and most-significant bytes respec-
tively, is placed on the TOS by calling subroutine
WRITE two more times. Now number B (Bl and
B2) is in NOS and A (Al and A2) is in TOS. The
command code for a 16-bit additicn, $6C, is now
placed in the 6502 accumulator and subroutine
COMMAND is called. The Am9511 adds TOS to
NOS and puts the result into TOS. The result R,
consisting of the most-significant byte R1 and the
least-significant byte R2 of the 16-bit answer, is ob-
tained by calling subroutine READ. The first call of
READ retrieves the most-significant byte R2, and
the second call of READ retrieves the least-
significant byte of the result R. The status register
can be read to see if the addition produced a carry or
an overflow.

Subtraction follows exactly the same pattern.
The minuend M is loaded on the stack, followed by

the subtrahend $ to obtain the difference D where D
= M - S After M and S are loaded on the stack,
the subtraction command ($2D for a 32-bit word)
will result in the difference I in TOS. Calling
subroutine READ (twice for a 16-bit integer, four
times for a 32-bit integer) gives the answer in the
order from most-significant byte to least-significant
byte. In division, the dividend is loaded on the stack
followed by the divisor, and the quotient is read afier
the operation is completed. Some of you will
recognize that the Am9511 uses RPN.

A program to illustrate these 16-hit operations is
given in Listing 2. Suppose we wish to subtract
$32FC from $FF5B. We would load $5B into loca-
tion $0004, $FF into location $0003, $FC into loca-
tion $0002, and $32 would be loaded into location
$0001. The 16-bit subtraction command for the
Am9511, $6D, would be loaded into location $0000.
The program in Listing 2 will call the appropriate
subroutines and place the answer in locations $00FF
(most-significant byte) and $00FE (least-significant
byte). This program can be used to test many of the
operations of the Am9511, including sine, cosine,
etc., by loading a 32-bit number (fixed or floating-
point representation) on the stack, and then placing a
command on the stack. It is a nice simple test pro-
gram, but remember that many of the Am931! func-
tions require that the argument is in floating point
form, so to find the square root of four requires that
you convert four to a floating-point number. The
Am9511 will do this if you either cannot or will not.

A word about execution time may be useful at
this point. Instructions take from 16 clock cycles for a
16-bit integer addition to several thousand clack
cycles for functions like sine, cosine, etc. We
operated our Am9311 at 1MHz, but it can be
operated at 2MHz and other versions go as high as
4MHz. Clearly the subroutines in Listing 1 require a
significant amount of overhead for the simple integer
operations, but become insignificant in terms of time
overhead when the complex functions are called.
Perhaps some reader will design an interface where
instructions like STA DATA, STA COMMAND,
LDA DATA, and LDA STATUS can be used in-
stead of the subroutines. The difficulty is in working
out the necessary timing requirements for the READ
and WRITE operations of the 6302. The Am9511
timing seems to be more closely related to 8080A
systems than either 6502 systems or 6800 systemns.

Our final illustrative program is onc that was
designed to generate a sine table consisting of one cy-
cle of a sine wave residing in one page of memory.
The amplitude of the sine wave is $7F00, in other
words, we found $7F00*Sin[Y*(Pi/128] where Y is a
number that varied from $00 w $FF (0 w0 255). This
result was converted to a 16-bit fixed point format,
and the most-significant byte was stored in a table in
page $0E, while the least-significant byte was stored
in a table in page 80F. Note that the result will be in
twos complement form, so at location 80E80 in the

hovember/December 1980, issug 7

26

COMPUTE!

Novemper/Decemper, W8G. ssue 7

table when we are exactly half-way through the sinc
wave, you will find $00, but at location $0E81 you
will find the first negative value of the sine wave and
it is $FC, the one in the most-significant bit of the
16-bit result indicating a minus number.

What do you do with a sine wave table? You
could read it out to a D/A converter at various rates
and play a tune, or you could add a series of sine
waves to make a more complex sound. My purpose
was to test the AM9511 and in the future I will use
the sine wave table as part of a fast-Fourier
transform program (I hope). Instead of synthesizing
music I would really like to synthesize $20 bills. Let
me know if you succeed.

- M -

ANY 6302 BASED MIGROCOMPUTER

FAD 3 : By
Az R
A2 Lj-———r—ﬁl DR
PAT [T | Ph
Pas T T3] DB
Pas oh4
PAB : cssiehonn 7:‘7 DB6
PA7 1 = by7
5522 i |
u jt]
¥BO + wa
i Fl
e 12 t M on
| AM#3IT
Ll wf
R T
3 !
Py ; LY
" 1 2
eBy ; 3 neset
pus 1 : 17} pavse 23
i 1K
I (ST £ |
i

Figure 1.

Interfacing the AM9311 Arithmetic Processing Unit to a 6522 VIA
Chip. Other interface adapters that may be used include the 6520,
the 6530 and the 6532. No special handshaking pins are used.

Listing 1 Subroutines to drive the AM9511

0300 A9 IF RESET LDA $1F Make PBO - PB4

0302 8D 02 AQ STA PBDD output pins to con-
trol the AM9511.

0305 A9 OF LDA $0F RESET pin to

0307 8D 00 A0 STA PBD logic zero.

030A AD 1F LDA $1IF Hold RESET high

030C 8D 00 A0 STA PBD for at least five

030F EA NOP clock cycles.

0310 EA NOP

0311 AR QOF LDA $0F Bring RESET pin

0313 8D 00 AQ STA PBD to logic zero to
run the AM9511.

0316 60 RTS Return to the call-
ing program.

errrerrratrenay

0320 8D 01 A0 WRITE STA PAD A contains the

0323 AD 04 LDA $04 byte to be written

0325 8D 00 A0 STA PBD to the AM9511
(A = accumula-
tor) CS low, C/D>
low, WR low.

0328 AD (00 AOWAIT LDA PBD Read PBD to see

if PAUSE pin is at

032B 10 FB BPL WAIT
032D A9 FF LDA $FF
032F 8D 03 A0 STA PADD
0332 EE 00 AO INC PBD
0335 A9 OF LDA $0F
0337 8D 00 A0 STA PBD
033A A9 00 LDA 300
033C 8D 03 AD STA PADD
033F 60 RTS

TrEEresEIERIILE

0340 8D 01 A0 COMMAND STA PAD

0343 A9 06 LDA $06
0345 8D 00 AD STA PED
0348 AD 00 AOLOAF LDA PBD
034B 10 FB BPL LOAF
034D A9 FF LDA $FF
034F 8D 03 A0 STA PADD
0352 EE 00 A0 INC PBD
0355 A9 OF LDA $OF
0357 8D 00 AD STA PBD
035A A9 00 LDA 500
035C 8D 03 A0 STA PADD
035F 60 RTS

0360 A9 0l READ LDA $01
0362 8D 00 A0 STA PBD
0365 AD 00 AOLOITER LDA PBD

0368 10 FB
036A AE 01
AD LDX PAD
036D A9 OF LDA SOF
036F 8D 00 A0 STA PBD
0372 60 RTS
sseenssnssannns
0380 A9 03 STATUS LDA $03
0382 8D 00 AQ STA PBD
0385 AD 00 AODELAY LDA PBD
0388 10 FB BPL DELAY
038A AE 01 A LDX PAD
038D A9 OF LDA $0F
038F 8D 00 A0 STA PBD
0392 60 RTS

logic zero {no data
transfer allowed).
1 PAUSE is high,
make PAD an
ourput port to
transfer data to
the AMIG1L.
Bring WR high to
complete data
transfer.

Next bring CS,
C/IY high.

Now make Port A
(PAD) an input
port again.
Return to the
calling program.

A contains the
command for the
AMOI511.

CS low, C/D
high, WR low.
Is PAUSE low?
Yes, then wait
until it goes high.
Make Port A an
output port.
Bring WR high.
Bring other con-
trol pins high.
Return Port A o
input status.

CS low, C/D low,
RD low.

Read PBD to see
if PAUSE is low.

BPL LOITER If it is, then wait

until it goes high.
Am9511 output
10 X register.
Bring control pins
high.

Return to calling
program with out-
put in X,

CS low, C/D
high, RD low,

Is PAUSE low?
Yes, then wait
until it goes high.
Read status regis-
ter of AM9511
and keep it in the
X register.

Bring control pins
high.

Sratus is in X
upon return.

TOS.

November/December. 1980. Issua 7 COMPUTE! 127
Listing 2 Program that loads four bytes (32 bits) and 0527 A5 00 LDA $00 stack, Y inta
a command into the Am9511 0329 20 20 03 JSR WRITE TOS.
032C A% 1D LDA $iD Change Y into
0352E 20 40 03 JS5R floating point
0400 20 00 03 START JSRRESET Resct the AMOSIT 0o Egr:fg”“ f{’l""l‘t: N
to start using it. e . SoMLipy Lo ge
0403 A2 03 LDX #03 Initiatize X to 0533 20 40 03 JSR Y*(Pi/128).
count fotr bytes. COMMAND Result to NOS.
0405 B3 01 LOOP LDA DATA,XGet byte from the — FDRS ;“z 5';{‘:;[53"-
data table. s
0407 20 20 03 JSR WRITE Write the byte in- 0338 20 40 03 {%‘MMAND g":l”éfgl result
;;:L AmO511. 0538 A9 00 LDA $00 Push $7F00 on
040A CA DEX Decrement byte ggzg:;‘ 32 03 ‘E?,\‘:;‘;TE stack.
counter.
OI0BA0.E5 EELLOOE tmp until.four ggg ?AOQ 210003 {SI])‘A‘;TII)TE Convert $7F00
jtes are written. 3 it
040D A5 00 LDA CMND Ger command 0347 20-40 03 JSE ='32312 to
byte from location COMMAND 2;;_‘::"% Fe
50000 e
040F 20 40 03 JSR Write command 054A 0"9 12 LDA $12 Find 32512"
GOMMAND 10 the AMY511. 054C 20 40 03 SR SIN[Y*(Pi/
0412 20 60 03 JSR READ Get MSB of 16- COMMAND 128}], result to
bit answer. NOS, pop
0415 86 FF STX MSB Pui nl;(lshsl‘ligniﬁ- — LDA $1F g’:‘;‘igfl’-lhm
cant vte here. . o
0417 20 60 03 JSRREAD Get L3 of 16- 0351 20 20 03 JSR number to
bit angwer. COMMAND fixed point
041A 86 FE STX LSB Put least-signifi- 0554 20 60 03 JSR READ E?T:,;SB of
;‘(‘):‘)‘Fi"“ " 0557 BA TXA ;(6-}_»it‘rcsu]t in
~ ~ r('glslcr.
gHCHD BRI s;‘fns:‘;};l_“ pre 01558 99 00 O STA MSB,Y Store itin a
table in page
Listing 3. Sine table generator $0E.
LB 8 E 0558 20 60 03 JSR READ Get LSR of 16-
035E 8BA TXA hit result.
055F 99 00 OF STA LSB,Y Store il in a
0500 20 00 03 SINE JSR RESET Reset the table in page
Am9511. $OF. s
0503 A9 1A LDA $1A Push Pi 0562 C8 INY TheemEn Y
0505 20 40 03 JSR (3.14159...) on .y
COMMAND TOS by writing 0363 DO BY BNE REPEATRepeat until
f\“‘gg’“ table is filled.
m9511. _—
0508 A9 80 LDA$80 Load 128 = ol R fmel St e
0504 20 20 03 JSR WRITE §0080 on TOS,
050D A9 00 LDA $00 Pi is pushed
050F 20 20 03 JSR WRITE down to NOS.
0512 A9 1D LDA $1D Convert 128 =
0514 20 40 03 JSR $0080 from
COMMAND fixed point w0
to floating
point form.
0517 A9 13 LDA $13 Divide NOS by
0519 20 40 03 JSR TOS (Pi'128),
COMMAND result onto
TOS.
051C A0 00 LDY $00 Y serves as
counter for 256
points.
051F A9 37 REPEAT LDA $37 Duplicate NOS
0520 20 40 03 JSR with TOS.
COMMAND Pi/128 is now
in TOS and
NOS.
0323 98 TYA Duplicate ¥ in
accumulator,
0524 20 20 03 JSR WRITE Push down

COMPUTE!

ABCDto
Floating-Point
Binary Routine

Marvin L. De Jong ‘ ‘
Department of Mathematics-Physics
The Schiool of the Ozarks

Pt Lookout, MO 65726

Introduction

The principal purpose of this article is to provide the
reader with a program that converts a BCD number
(ASCII representation) with a decimal point and/or
an exponent to a floating-point binary number. The
floating-point binary number has a mantissa of 32
bits, an exponent byte consisting of a sign bit and
seven magnitude bits, and a sign flag (one byte) for
the mantissa. Positive and negative numbers whose
magnitudes vary from 1.70141183%1038 1o
1.46936795* 103 and zero can be handled by this
routine. In subsequent articles I Aope to provide an
output routine and a four-function arithmetic
routine. The routine described here could be used in
conjunction with the Am9511 Arithmetic Processing
Unit * to perform a large variety of arithmetic func-
tions.

Fioating-Point Notation

Integer arithmetic is relatively simple to do with the
6502. Consult the Bibliography for a number of
sources of information on multiple-byte, signed
number addition, subtraction, multiplication and
division. Scanlon’s book, in particular, has some
valuable assembly language routines of this sort.
However, additional problems arise when the
decimal number has a fractional part, such as the
141597 in the number 3.14159. Also, integer
arithmetic is not suitable for handling large numbers
like 2.3* 1013, The solution is to convert decimal
numbers to floating-point binary numbers. A binary
floating-point number consists of a mantissa with an
implied binary point just to the left of the most-
significant non-zero bit and an exponent (or
characteristic) that contains the information abour
where the binary point must be moved to represent
the number correctly. Readers who are familiar with
scientific notation wili understand this quickly.
Scanlon’s book has a good section on floating-point
notation. We will merely illustrate what a decimal
number becomes in floating point binary by referring
you to Table 1. The dashed line over a sequence of
digirs means that they repeat. For examples, 1/3 =
33 and 1/11 = .09090 = .090 while a binary exam-

ple is 171010 = 00011001100 = .000116G0.

Fatsruary, 1981 lssus 5

Table 1. Decimal number to floating-point binary con-
versions,
FLOATING
BINARY POINT
NUMBER NUMBER NOTATION MANTISSA EXPONENT

0 0 0x20 0 0
1 1 axal 1 1
2 10 ax2? 1 10
4 100 axed 1 11
1.5 1.1 arxazd 11 1
0.75 11 a1 x 20 11 o
0.1 0.00011001100 1700 X 2-3 1100 -11
31 11111 A1 X 28 11 101
32 100000 100000 1 110

A close examination of Table 1 yields some impor-
tant conclusions. Unless a number is an integer
power of two (2" where n is an integer), the mantissa
required to correctly represent the number will re-
quire more bits as the numbers increase. Thus, the
number | can be correctly represented with a one-bit
mantissa, but the number 31 requires a five-bit man-
tissa. A n-bit mantissa can correctly represent a
number as large as 27 - 1, but no larger. There is
another problem associated with numbers like 0.1,
that become repeating numbers in binary. It should be
clear that no mantissa with a finite number of bits
can represent 0.1 exacily. The fact that computers use
a finite number of bits to represent numbers like 0.1
can be illustrated by using BASIC (o add 0.1 to a
sum and print the answer repeatedly, Starting with a
sum of zero, we obtained an answer of 3.6 aftter 36
times through the loop, but the next answer is
3.69999999 which is clearly incorrect. The ervor in-
curred by using a finite number of bits, to represent
a number that requires more than that number of
bits to correctly represent it, is called roundoff error.

How many bits should be used for the mantissa?
Clearly it should be an integer number of bytes for
ease in programming. Some computers have software
packages that use a 24 bit mantissa. The largest
number that can be represented by 24 bits is 224 -

= 16777213, This represents about seven decimal
digits, giving aboul six digit accuracy after several
calculations. With my salary there is no trouble with
six digit accuracy, but many financial calculations re-
quire accuracy to the nearest cent, and six digits are
frequently not enough. If we choose 32 bits for our
mantissa size we get a little more than nine digits
(4.3 X 109). This is the mantissa size used in several
versions of Microsoft BASIC, and it is the size
chosen here. The propagation of round-aff errors
through the calculations normally gives about eight
digit accuracy. It is generally true that the roundoff
errors accumulate as the number of calculations to
find a specific result increases, but this is a subject
beyond the scope of this article,

How big should the exponent be? Iff we choose
to represent the binary exponent with one byte then
we will have seven bits to represent the exponent
(one sign bit and seven magnitude bits). The largest

48 COMPUTE!

exponent is then +127. If all the bits in the mantissa
are ones, then the largest number that can be
represented is (1/2 + 1/4 + 1/8 + 1/16 +.... +
1/232)*2127 which is approximately
1.70141183*1038. The smallest exponent is ~128.
The smallest positive number that the mantissa can be
is 1/2, thus the smallest positive number that can be
represented is 27129 which is approximately
1.4693679510-39, OF course, if we chose to use two
bytes for the exponent then much larger and smaller
exponents could be accommodated, but for most
calculations by earth people, a range of 10739 o 1038
will do quite nicely. Remember that if you try to
enter a number whose absolute value is outside of the
range just given (except for zero) you will obtain er-
roneous results. No overflow or underflow messages
are given when entering numbers with this routine.

One more note before turning to the program.
The mantissa is said to be normalized when it is
shifted so that the most-significant bit is one, and the
binary point is assumed to be to the left of the most-
significant bit. The only exception to this is the
number zero which is represented by zeros in both
the mantissa and the exponent. Although you are
free to assume the binary point is some other place in
the mantissa, it is conventional to keep it to the left
of the mantissa, as illustrated in Table 1.

The Program To Float A Number

The program in Listing 1, written in the form of a
subroutine, together with the other subroutines given
in the listings, will accept numbers represented by
ASCII from an input device and convert the
numbers into their floating point representation. A
typical entry might be + 12.3456789E + 24 or
-.123456789E-30. The plus sign is optional since the
computer simply disregards it. Up to 12 significant
digits may be entered, although the least-significant
three will spon be disregarded, leaving approximately
9 decimal digits (32 binary digits), At the completion
of the routine, the floating-point representation will
be found in locations $0001, $0002, $0003, $0004
(mantissa), $0005 (exponent) and location §0007 con-
tains the sign of the mantissa. The sign byte is §FF if
the number is negative, otherwise it is $00. Note that
the accumulator (locations $0001-$0004) has not
been complemented in the case of a minus number.
Forming the twos complement may be done, when
required, by the arithmetic routines. If a format
compatible with the Am9311 Arithmetic Processing
Unit is required, simply drop the least-significant
byte of the mantissa (80004), put the sign (set the bit
for & minus, clear it for a plus) in bit seven of the ex-
ponent (30005) and shift the sign of the exponent
from bit seven to bit six, making sure to keep the
rest of the exponent intact. Table 2 gives a summary
of the important memory locations.

Febranry, 1951 Issue 9.

Table 2. Memory assignments for the BCD to floating-
point binary routinc.

$0000 = OVFLO; overflow byte for the accumulator when it
is shifted left or multiplied by ten.

$0001 ~ MSB; most-significant byte of the accumulator.
§0002 = NMSB; next-most-significant byte of the ac-
cumulator.

$0003 = NLSB; next-least-significant byte of the ac-
cumulator,

$0004 = LSB; least-significant byte of the accumulator.
$0005 = BEXP; contains the binary exponent, bit seven is
the sign bit.

$0006 = CHAR; used to store the character input from the
keyboard.

$0007 = MFLAG; sct to $FF when a minus sign is cntered.
$0008 = DPFLAG; dccimal point flag, set when decimal
point is entered.

$000A = ESIGN; sct to $FF when a minus sign is entered for
the exponent.

$000B = TEMP; temporary storage location.

$000C = EVAL; value of the decimal exponent entered after
the “E.”’

$0017 = DEXP; current value of the decimal exponent.

Alfter clearing all of the memory locations that will be
used by routine, the program in Listing 1 jumps 10 a
subroutine at $0F9B. Most users will not want to call
this subroutine, since it merely serves to clear the
AIM 65 display. Subroutine INPUT, called next,
must be supplied by the user. It must get a BCD
digit represented in ASCII code from some input
device, store it in CHAR at $0006, and rerurn to the
calling program with the ASCII character in the
6502's accumulator. The necessary subroutines for
the AIM 65 are given in Listing 4. They are given in
the ““K"" disasserbly format with no comments since
they have previously been described by De _]ong2.
Qur subroutines input the number on the keyboard
and echo the number on the printer and the display.

The algorithm for the conversion routine was
obtained from an article by Hashizume?. If you are
interested in more details regarding floating-point
arithmetic routines, please consult his finc article. A
flow chart of the routine in Listing 1 is given in
Figure 1. The flow chart and the program comments
should be sufficient explanation. Basically it works by
converting the number, as it is being entered, to
binary and multiplying by ten, in binary of course.
Later, if and when the exponent is entered, the
number is either multiplied or divided by ten, in
binary, to get a normalized mantissa and an expo-
nent representing a power of two rather than a power
of ten. Each time a multiplication or division by ten
occurs the mantissa is renormalized and rounded up-
ward if the most-significant discarded bit is one,
Each normalization adjusts the binary exponent.
When the decimal exponent finally reaches zero no
more multiplications or divisions are necessary since
10Y = 1. To maintain 32-bit precision, an extra
byte, called OVFLO, is used in the accumulator for
all *10 and /10 opurmir_ms,

50 COMPUTE! Iz wy, 1951 Issue @
REFERENCES OE34 84 0B STY TEMP Save Y. It contained the
L. De Jong, Marvin L., “Interfacing the Am9311 Arithmetic OE56 A9 20 LDA 520 number of “left shifts™ in
Processing Unit,”” COMPUTE II. (in press). T o ¥§)R€4 .
. o n 5N et 7 J ¢ binary exponent is -
2 D‘i g“;f]')leg;;" ;“"“ smnid o Nerepad i MICHO,G; OE59 E5 0B SBC TEMP number of foft shifes that
» SCPt LA . . o OE5B 85 05 STA BEXP NORM took to make the
3. Hashizume, Burt, Flom.lng P:)lm Arithmetic,” BYTE, most-significant bit one.
V2, No. 11, Nov. 1977, p. 76. OE5D A5 01 LDA MSB If the MSB of the accumu-
BIBLIOGRAPHY 025!’ FO 5A BEQ Fll:ﬂSH lator is zcra, then the
1. Programming and Interfacing the 6502, With Experiments OEG LA 506 LDA CHAR number is 2cro, and its all
Mgan'in 1. %c Jong, Howarc% w. Sams‘& Co., = ’ 0E63COun CMF §45 01:'“;' Ot};’emi“‘ chek if
Indianapolis, 1904, L SASREEEYE 88
2. 6502 Assembly Language Programming, Lance A, OE65 DO 52 BNE TENPRWIF not, move to TENPRW.
Leventhal, Osborne/McGraw-Hill, Berkeley, 1978, OE67 20 30 GF JSRINPUT If so, get another character.
3. 6502 Software Design, Leo J. Scanton, Howard W, Sams OE6A C9 28 CMP $2B Is it ;.\p:“,?
& Co., Indianapolis, 1980, OE6C FO 06 BEQ PAST Ycs, then get another
character.
OEGE C9 2D CMP $2D Perhaps it was a minus?
Listing 1. ASCII to Floating-Point Binary Conversion OE70 DO 05 BNE NUMP No, ;’hﬂl maybe it was a
number.
Frogram OE72 C6 DA DEG ESIGN Set exponent sign flag.
OE74 20 30 OF PAST JSR INPUT Get annther character.
$O0ED0 D8 START CLD Decimal mode not required DE77 €930 NUMB CMP $36 Is it a digit?
UE01:AZ 20 LDX §20 Clear all the memory Toca- 0E79 90 3E BCC TENPRW No, more to TENPRW.
OED3 A9 00 LDA 500 tions used for storage by OE7B C9 3A CMP $3A
OED5 95 00 CLEAR STA MEM,X this routine by loading OE7D BO 3A BCS TENPRW
them with zeros. OE7F 38 SEC It was a digit, so strip
0E07 CA DEX ASCII prefix.
OE08 10 FB BPL CLEAR $OE80 E9 30 SBC $30 ASCII prefix is $30.
0EQA 20 9B OF JSR CLDISP Clears AIM 65 display. OE82 85 OB STA TEMP Kecep the first digit here.
OEOD 20 30 OF JSR INPUT Get ASCII representation of QE84 20 30 OF JSRINPUT Get another character.
0E10 C9 2B CMP §2B BCD digit. Is it a + sign? QE87 C9 30 CMP $30 Is it a digit?
0E12 FO 06 BEQ PLUS Y3, get another character. QOE89 90 13 BCC HERE. No. Then finish handling
OE14 C9 2D CMP $2D Is it a minus sign? OESE C9 3A CMP $3A the exponent. ;
0E16 DO 05 BNE NTMNS QESD B0 OF BCS HERE
0E19 Cé6 07 DEC MFLAG Yes, set minus flag to $FF. OESF 38 SEC Yes. Decimal cxponent is
OE1A 20 30 OF PLUS JSR INPUT Get the next character. 0E30 E9 30 SBC $30 new digit plus 10 times the
OEiD C9 2E NTMNS CMP $IE Is character a decimal ald digil.
oint? OE92 85 0C STA EVAL Strip ASCII prefix
OE1F D0 08 BNE DIGIT No. Perhaps it is a digit. from new digit.
Yes, check flag. 0E9$ A5 OB LDA TEMP Get the old character and
OE21 A5 08 LDA DPFLAG Was the decimal point flag 0EY6 DA ASI, A multiply it by ten. First
sct? times two.
DE23 DO 2C BNE NORMIZ Time te normalize the 0E97 DA ASL A Times two again makes
mantissa. times four.
OEZ5 E6 08 INC DPFLAG Set decimal point flag, 0FE98 18 CLC
OE27 DO Ft BNE PLUS and get the next character, 0EYY 65 0B ADC TEMP Added to itsclf makes times
0E29 C9 30 DIGIT CMP 330 Is the character a digit? five.
OE2B 90 24 BCC NORMIZ No, then normalize the OEYB 0A ASL A Times two again makes
mantissa. times ten.
0E2ZD CS 3A CMP $34 Digits have ASCII repre- DE9C 85 0B STA TEMP Store it.
OE2F BO 20 BCS NORMIZ sentations between 330 OEYE 18 HERE CLC Add the new digit,
and $39. OE9F A5 OB LDA TEMP
OE31 20 00 0D JSR TENX It was a digit, so multiply 0EA1 65 0C ADC EVAL to the exponent.
0E34 A5 06 LDA CHAR the accumulator by ten and OEA3 85 06C STA EVAL Here is the exponent,
OE36 38 SEC add the new digit. First OEA5 A5 0A LDA ESIGN except for its sign. Was
QE37 E9 30 SBC $30 strip the ASCII prefix by it a negative?
subtracting $30. OEA7 FO 09 BEQ POSTY No.
OE39 18 CLC Add the new digit to the OEAD A5 0C LDA EVAL Yes, then farm its twos
OE3A 65 04 ADC LSB least- significant byte CEAR 49 FF EOR $FF complement by complemen-
of the accumulator. OEAD 38 SEC tation followed by adding
DE3C 85 04 STA LSB Next, any “‘carry’ will be p—
OE3E A2 03 LDX $03 added to the other bytes of OEAE 69 00 ADC $00
the accumulator. QEBO 85 0C STA EVAL Result into exponent value
$0E40 A9 00 ADDIG LDA $00 location.
0E42 75 00 ADC AGC,X Add carry here. OEB2 18 POSTV CLC Prepare to add exponents.
DE44 95 00 STA AGC,X And save resull. OER3 A5 0C LDA EVAL Got “E™ ¢xponent.
0E46 CA DEX OEB5 65 17 ADC DEXP Add exponent from input
DE47 10 F7 BPL ADDIG The new digit has becn and norm,
added. OEB7 85 17 STA DEXP All exponent wark finished.
0E49 A5 08 LDA DPFLAG Check the decimal point
flag. $OEBY9 A5 17 TENPRWLDA DEXP Get decimal expenent.
0E4B FO CD BEQ PLUS If not set, get another OEBB F0 71 BEQ FINISH If it is zero, routine is
character, done
QE4D C6 17 DEC DEXP If set, decrement the OEBD 10 61 BPL MLTPLY Ir it is plus, go muliiply by
OE4F 30 C9 BMI FLUS exponent, then get another ten.
character. OEBF A2 03 ONCMORLDX $03 It's minus. Divide by ten.
0E51 20 30 0D NORMIZJSR NORM Normalize the mantissa. DEC1 06 0¢ BACK ASL LSB First shift the accumulator

February, 1987 Issu= @

COMPUTE!

51

DEC3 26 03
DECS5 26 02
0EC? 26 01
0ECY 26 00
DECR G6 05
OECD CA
DECE DO F1
DEDO A0 20
0ED2 06 04
OED4 26 03

OEDG 26 02
OEDS 26 01
QEDA 25 00
0EDC 88
OEDD FO OF
OEDF A5 00

0EE1 38
OEE2 E9 0A
0EE4 30 EC

GEES 85 00
OEEB E6 04

CQEEA 18

GEEB 90 E5
OEED A5 00
OEEF C9 0A

0EF1 90 15
0EF3 A2 04
$OEF5 B5 00
0EF7 69 00
0EF9 95 00
JEFB CA
EFC DO F7
OEFE 90 08
OF00 A5 01
(F02 09 80

0F04 85 01
0F06 E6 05

OF08 A5 01
OF0A 30 0A
OFGG 06 04
OFQE 26 03

0F10 26 02
0F12 26 01
0F14 C6 05

0F16 A9 00
OF18 85 00
OF1A E6 17
OF1C DO A1
OF1E F{ OE

0F20 A9 00
0F22 85 00

0F24 20 00 0D STLPLS JSR TENX

OF27 20 30 0D

0F2A C6 17
OF2C DO F6&
OFZE 60

AGAIN

ouT

REPET

AHEAD

ARND

MLTPLY LDA $00

ROL NLSB three bits left.
ROL NMSB
ROL MSB
ROL OVFLO
DEC BEXP Decrease the binary
DEX cxponent for each left shift.
BNE BACK
LDY $20 Number of trial divisions
ASL LSB of $0A into the accumu-
ROL NLSB lator giving a $20 = 32
bit guatient.
ROL NMSB
ROL MSB
ROL OVFLO
DEY
BEQ OUT Get out when number of
LDA OVFLO trial divisions reaches
$20 = 32.
SEC Subtract 10 = $0A from
SBC $0A partial divident in OVFLO.

BMI AGAIN

If result is minus, zere into
quotient

Listing 2. Multiply by Ten Subroutine.
C

$0D00 18 TENX CL Shift accumulater left.

D01 A2 04 LDX $04 Accumulator contains

0D03 B3 00 BR1 LDA ACC,X four bytes so X is set to
four.

0D05 2A ROL A Shift a byte left.

0D06 95 10 STA ACCB,XStore it in accumula-
tor B.

0D08 CA DEX

0DO09 10 F8 BPL BR1 Back to get another
byte.

0DOB A2 04 LDX $04 Now shift accumulator B

0DOD 18 CLC left once again to get
“times four.'*

ODOE 36 10 BR2 ROL ACCB XShift onc byte left.

0D10 CA DEX

0D11 10 FB BPL BR2 Back to get another byte.

0D13 A2 04 LDX 504 Add accumulator to

0D15 18 CLC accumulator B to get
A+ 4*A = 57A,

OD16 B3 00 BR3 LDA ACC,X

0D18 75 10 ADC ACCBX

OD1A 95 00 STA ACC,X Result into accumulator.

oni1C CA DEX

0D1D 10 F7 BPL BR3

OD1F A2 04 LDX §04 Finally, shift accumula-

0D21 18 CLC tor left onc bit to get
2*5*A = 10°A,

0D22 36 00 BR4 ROL ACC.X

0D24 CA DEX

0D25 10 FB BFL BR4 Get another byte.

0D27 60 RTS

dedicated task.

Let the MICROSle[TM

/" WANT YOUR COMPUTER BACK?™

Microcomputer (MMC) take over any

It is the affordabie altermative — kits from $89.00, application
units from only $119,00 (assembled and tested).

STA OVFLO Otherwise store result in
INC LSB OVFLO, and set bit to one
in quotient.

CLC

BCC AGAIN Try it again.

LDA OVFLO Check once more to see if

CMP §0A quotient should be rounded
upwards.

BCC AHEAD No.

LDX $04 Yes. Add one to quotient.

LDA ACC,X Get cach byte of the accu-

ADC $00 mulator and add the carry

STA ACC,X from the previous addition.

DEX

BNE REPET

BCC AHEAD What if carry frem accumu-

LDA MSH lator oecurred? Get most-

ORA §80 significant byte and put a 1
in bit seven.

STA MSB Result into high byte,

INC BEXP and inctement the binary
exponent.

LDA MSB Because of three-bit shift at

BMI ARND start of division, a one-bit

ASL LSB shift (at most) may be re-

ROL NLSB quired to normalize the
mantissa now,

ROL NMSB

ROL MSB

DEC BEXP If so, also decrement binary
exponent.

LDA $00 Clear overflow byte.

STA OVFLO

INC DEXP For each divide-by-10,

BNE ONCMOR increment the decimal ex-
BEQ FINISH ponent until it is zero,
Then its all over.

Clear overflow byte.

STA OVFLO
Jump to multiply-by-ten
subroutine,

JSE NORM Then normalize the
mantissa.

DEC DEXP For cach multiply-by-10,

BNE STLPLS decrement the decimal ex-

FINISH RTS ponent until it's zero. All

finished now,

It is user-oriented — complete in<ircuit emulation allows pro-
gram development on ANY 6502 based system. It is compact
@%" x 61" pe board) but powerful (32 1/ lines; 20 mA full
duplex, IK RAM + EPROM socket 4/16 bit counters; 6503
€PU) and works off any AC or DC power supply.
Tum your present 6502 based system into a complete develop-
ment system with:
1 MMC/03D Microcomputer with ZIF sockets
1 MMC/031CE Incizcuit emulator for the 6503 CPU

1 MMC/03EPA EPROM Programmer complete with software

driver,

For more info call or write

R. I. BRACHMAN ASSOCIATES, INC.
P.0. Box 1077
Havertown, PA 19083
(215)622-5495

52

COMPUTE!

Fatruary, 981, Issue &

Listing 3. Normalize the Mantissa Subroutine.

$0D 30 18 NORM CLC

0D 31 A5 00 BR6 LDA OVFLO Any bits sct in the over-

0D33 FO OF BEQ BR5 flow byte? Yes, then
rotate right.

0D33 46 00 LSR OVFLO No, then rotate left.

0D37 66 01 ROR MSB

0D39 66 02 ROR NMSB

0D3B 66 03 ROR NLSB

0D3D 66 04 ROR LSB For cach shift right,

OD3F E6 05 INC BEXP increment binary
exponent.

0D41 B8 CLV Force a jump back.

0D42 50 Ed BVC BRé

0D44 90 0D BRS BCC BR7 Did the last rotate cause

0D46 AZ 04 LDX $04 a carry? Yes, then round

0D48 B5 00 BR8 LDA ACC,X the mantissa upward.

0D4A 69 00 ADC $00 Carry is set sa one is
added

0D4C 95 00 STA ACC. X

0D4E CA DEX

0D4F 10 F7 BPL BR8

0D51 30 DE BMI BR6 Check overflow byte
once more.

0D53 AQ 00 BR7 LDY $00 Y will count number of
left shifts.

0D55 A5 01 BRI0 LDA MSB Does most-significant

0D57 30 0D BMI BRIt byte have 2 one in bit
seven? Yes, get out.

0D59 18 CLC No. Then shift the

0D5A A2 04 LDX S04 accumulator left one bit.

0D5C 36 60 BRY ROL ACC,X

OD3E CA DEX

0D5F DO FB BNE BR9

0D61 C8 INY Keep track of left shifts.

0D62 CO 20 CPY $20 ﬁot more than $20 = 32

1ts.
0D64 90 EF BCC BR10
0D66 60 BR11 RTS That’s it.

DISK DRIVE WOES? PRINTER INTERACTION?
MEMORY LOSS? ERRATIC OPERATION?
DON’T BLAME THE SOFTWARE!

180-2

"
A o

Fower Line Spikes, Surges & Hash could be the culprit!
Floppies, printers, memory & processor often interact!

Our unique ISOLATORS eliminate equipment interaction
AND curb damaging Power Line Epikes, Surges and Hash.
*ISOLATOR {ISO-1A) 3 filter isolate? 3-prong sockets;
integral Surge/Spike Suppression; 1875 W Maximum load,
TKWloadanysocket $56.95
"ISOLATOR (1S0-2) 2 filter isolated 3-prong socket banks;
{6 sockets tatal); integral Spike/Surge Suppression:

1875 W Max load, 1 KW eitherbank, .. £56.95

*SUPER ISGLATOR (180-3), similar 10 ISO-1A

except double filtaring & Suppression $85.95
*ISOLATOR (1S0-4), similar ta 1ISO-1A sxcept

unit has 6 individually filtered Sockets $96.95
*ISOLATOR (1SQO-5), similar to ISO-2 except

unit has 3 socket banks, 9 sockats total $79.95

*CIRCUIT BREAKER, any model ladd-CB) Add S 7.00
*CKT BRKR/SWITCH/PILOT (CBS) Add $14.00
TOLL FREE ORDER DESK 1.800-225-4876
{Except M, Hi, Ak, Pr, Cannda) L
LZF Electronic Specialists, Inc.
171 South Main Stres!. Natick. Mass. 01780
TECHNICAL & NON-800 AREAS 1-617-655.1532

Dept. CT

Listing 4. AIM 65 Input/Output Subroutines.

$OF30 20 JSR E93C $0F60 A2 LDX #13 $OF72 8D STA A44C
0F33 20 JSR FOOO0 OF62 8A TXA 0F75 A2 LDX #01
OF36 85 STA 06 0F63 48 PHA 0F77 BD LDA A+438,X
OF38 20 JSR OF72 OF64 BD LDA A438,X0F7A CA DEX

OF3B 20 JSR 0F60 OF67 09 ORA #80 OF7B 9D STA A+438,X

OF3E A5 LDA 06 OF69 20 JSR EF7B OF7E E8 INX

0F40 60 RTS OF6C 68 PLA OF7F E8 INX
OF6D AA TAX OF80 E0 CPX #15

SOF85 A2 LDX 412 (F6E CA DEX 0F82 90 BCC 0F77

UF87 BD LDA A438 X0F6F 10 BPL 0F62 OF84 60 RTS
0F8A E8 INX OF71 60 RTS

OFSB 9D STA A438.X
OFS8E CA DEX

OF4F CA DEX

0F90 10 BPL OF87
0F42 A9 LDA #20
OF34 BD STA A438
OF97 20 JST 0F60
OF%A 60 RTS

SOFYB A2 LDX #13
OF4D A9 LDA #20
OF9F 9D STA A438 X
0FA2 CA DEX

OFA3 10 BPL 0F9F
O0FAS5 60 RTS

BECHEMI N

DBLLIMAL

FAPONAN
bR

o
AT
[

NORMALIZE
MANTIN 3

[
| e
i

il

s i
i
S ot !
T !
|

e ‘

A e A |
R
it

[F‘““l

RNy
HIEC I

Figure L. A Flow Chart for the BCD to
Floating-Point Binary Routine.

COMPUTE!

Apil 1951, Issue 1

A
Floating-
Point
Binary To
BCD
Routine

Marvin L Delong
Department of
Mathematics-Physics
The School of the Ozarks
Pt. Lookout, MO 65726

Introduction

A previous issuc of COMPUTE!
carried a BCD to Floating-Point
Binary Routine that can be used to
convert a series of decimal digits
and a decimal exponent to a binary
number in a floating-paint format.
The purpose of such a routine is to
enable the user to perform floating-
point arithmetic. The program
described in this article performs
the reverse operation; that is, it
converts a floating-point binary
number to a decimal number and a
decimal exponent. With these two
routines and an Am9511 Arith-
metic Processing Unit one can do
most of the functions found on
scientific calculators. I hope to pro-
vide a few simple arithmetic
routines in the near future. In the
meanwhile, you can amuse yourself
by converting numbers to floating-
point binary numbers and then
back to decimal numbers.

Hindsight

The BCD to floating-point binary
routine described previously used a
divide-by-ten routine that was part
of the main program. With my ex-
cellent hindsight I now realize that
the divide-by-ten routine should
have been written as a subroutine, to

Listing 1. A New Divide-by-Ten Routine.

SOEBF 20 C5 OE ONCMOR JSR DIVTEN

0EC2 B8
0ECS3 50 351
0EG3 A9 00
0EC7 A0 28
OEC9 06 00
OECB 26 04
OECD 26 03
O0ECF 26 02
0ED1 26 01
0ED3 2A
0ED4 C9 0A
OEDE 90 05
0QEDS 38
OEDS E9 0A
GEDB E6 00
QEDD 88
0EDE DO E9
OEEO C6 05
QEE2 06 00
OEE4 26 04
QEEG6 26 03
QEES8 26 02
GEEA 26 01
OEEC 10 F2
OEEE A5 00
0EF0 10 12
0EF2 38
0EF3 A2 04
QEF35 B5 00
0EF7 69 00
OEF9 95 00
OEFB CA
OEFC DO F7
OEFE 90 04
OF00 66 01
0OF02 E6 05
0F04 A9 00
OF06 85 00
0F08 60

0F16 A9 00

DIVTEN

BRA

BRB

BRC

BRD

BRE

ARND

CLV

BVC ARND
LDA $00
LDY §28
ASL OVFLO
ROL LSB
ROL NLSB
ROL NMSB
ROL MSB
ROL A
CMP $0A
BCC BRB
SEC

SBC $0A
INC OVFLO
DEY

BNE BRA
DEC BEXP
ASL OVFLO
ROL LSB
ROL NLSB
ROL NMSB
ROIL MSB
BPL BRC
LDA OVFLO
BPL BRE
SEC

LDX $04
LDA ACC.X
ADC §00
8TA ACCX
DEX

BNE BRD
BCC BRE
ROR MSB
INC BEXP
LDA §00
STA OVFLO
RTS

LDA §00

Jump to divide-by-ten subroutine.
Force a jump aryund the routine.
The new subroutine is inserted
here. Clear accumulator for use
as a register. Do $28 = 40 bit
divide. OVFLO will be used as
“‘guard’’ byte.

Roll onc bit at a time into the
accumulator which serves to hold
the partial dividend.

Check to see if A is larger than
the divisor, $0A = 10.

No. Decrease the bit counter.
Yes. Subtract divisor from A.

Set a bit in the quotient.
Drecrease the hit counter.

Division is finished, now normalize.
For each shift left, decrease the
binary exponent.

Rotate the mantissa left until a

one is in the most-significant hit.

If the most-significant bit in the
guard byte is one, round up.
Add one.

X is byte counter.

Get the LSB.

Add the carry.

Result into mantissa,

Back to complete addition.

No carry from MSB so finish.

A carry, put in bit seven,

and increase the binary exponent.
Clear the OVFLO position, then
get out.

Empty memeory locations here,
Remainder of BCD-to-floating

point routine is here.

Listing 2. Modifications to the BCD-to-Floating-Point Binary Routine.

SOE54 18
QE55 A5 05
O0E57 69 20
OE59 85 03
OE5A EA
OE5B EA

$0D53 AOQ 20
0D55 A5 01
0D57 30 0D
0D59 18
OD5A A2 04
0D5C 36 00
OD5SE CA
OD5F DO FB
aD61 C6 05
0D63 88
aD64 DO EF
0D66 60

BR7
BR10

BRS

BR11

CLC

LDA BEXP
ADC §20
STA BEXP
NOP

NCP

LDY $20
LDA MSB
BMI BR11
CLC

LDX $04
ROL ACC,X
DEX

BNE BRI
DEC BEXP
DEY

BNE BR10
RTS

Clear carry for addition.

Get binary exponent.

Add $20 = 32 o place binary
peint properly.

Y will limit the number of
left shifts to 32.

If mantissa has a one in its
most-significant bit, get out,

Shift accumulator left one bit.

Decrement binary exponent for cach
left shift.
No more than $20 = 32 bits shifted.
That's it.

68

COMPUTE!

April. 1981, Issue 11

be called by éath the BCD to
floating-point binary routine and
the binary to decimal routine
described here. So my first task
was to rewrite the divide-by-ten
routine as a subroutine. I also
discovered that the divide-by-ten
routine described in the previous
article did not give sufficient preci-
sion. In any case, the divide-by-ten
routine was completely revised and
appears in Listing 1 in this article.
It uses the location $0000, called
OVFLO, as a ““guard’’ byte to
give the necessary precision. It
actually starts at $0EC3, but our
listing starts at $0EBF to indiciate
a few changes that must be made
in the original listing to insert the
subroutine.

Some other minor modiftca-
tions to the program are given in
Listing 2. Although the BCD to
Floating-Point Binary program will
work without these changes, it will
work better if you introduce the
changes shown in Listing 2. The
development of the program
described in this article enabled me
to find some places to improve the
other routine. The modifications
are simple and short.

The Conversion Routine

The program to convert a nor-
malized floating-point binary
number and its exponent to a BCD
number and then output the result
is given in Listing 3. A 32-bit
binary to BCD conversion sub-
routine is called by this program
and it is found in Listing 5. A
flowchart of the entire process is
given in Figure 1. The normalized
floating-point binary mantissa is
operated on by a series of *'times
ten’’ or ‘‘divide by ten’’ operations
until the binary point is moved
from the left of the mantissa to the
right of the 32 bit mantissa. In
other words, we multiply by ten or
divide by ten until the binary
exponent is 32. Then the mantissa
represents an integer and can be
converted to a BCD number using
the subroutine in Listing 5. The
algorithm for this latter routine

is from Peatman’s (John B)

Listing 3. A Floating-Point Binary to BCD Routine.

$0BO0 A5 01
0B0Z DO OE
0B04 20 9B OF
OBO7 A9 30
0B09 20 A6 OF
OBUC A9 0D
OBOE 20 A6 OF
0B11 60
0B12 A9 00
0B14 85 00
0B16 A5 05
0B18 10 OB
0B1A 20 00 OD
0B1D 20 30 0D
0B20 C6 17
0B22 B8
0B23 50 F1
0B25 A5 05
0B27 C9 20
0B29 FO 48
0B2B 90 08
0B2D 20 C5 OE
0B30 E6 17
0B32 B8
0B33 50 FO
OB35 A9 00
0B37 85 00
0B39 20 00 0D
0B3C 20 30 OD
OB3F C6 17
0B41 A5 05
0B43 C9 20
0B45 FO 2C
0B47 90 FO
0B49 2¢ C5 OE
0B4C E6 17
OB4E A3 05
0B30 C9 20
0B52 FO OF
0B34 46 01
OB36 66 02
0B38 66 03
OB3A 66 04
0B3C 66 0B
0B5E EG 05
0B60 B8
0B61 50 EB
0B63 A5 OB
0B65 10 0C
0B67 38
0B68 A2 04
0B6A B5 00
0B6C 69 60
0B6E 95 00
0B70 CA
0B71 DO F7
0B73 20 67 GD

0B76 A0 04
OB78 A2 04
0B7A 18
0B7B 76 20
0B7D CA
OB7E 10 FB
0B8O 88
0B81 DO F5
0Ba3 E6 17
0B85 FO 06

BEGIN

BRT

BRY

BVC BRY
BRZ

BRW

BRU

BRY

BRS

BCD

BRM
BRP

BRQ

LDA MSB
BNE BRT
JSR CLDISP
LDA $30
JSR QUTCH
LDA 50D
JSR OUTCH
RTS

LDA 300
STA OVFLO
LDA BEXP
BPL BRZ
JSR TENX
JSR NORM
DEC DEXP
CLY

Repeat.

LDA BEXP
CMP $20
BEQ BCD
BCC BRX
JSR DIVTEN
INC DEXP
CLV

BVC BRZ
LDA $00
STAOVFLO
JSR TENX
JSR NORM
DEC DEXP
LDA BEXP
CMP $20
BEQ BCD
BCC BRW
JSR DIVTEN
INC DEXP
LDA BEXP
CMP %20
BEQ BRV
LSR MSB
ROR NMSB
ROR NLSB
ROR LSB
ROR TEMP
INC BEXP
CLV

BVC BRU
LDA TEMP
BPL BCD
SEC

LDX $04
LDA ACC,X
ADC $00
STA ACC,X
DEX

BNE BRS
JSR CONVD

LDY $04
LDX $04
CLC

ROR BCDN.X
DEX

BPL BRQ
DEY

BNE BRP
INC DEXP
BEQ BRO

Test MSB to see if mantissa is zero.
If it is, print a zero and then

get out. Clear display.

Get ASCII zero.

Jump to output subroutine.

Get “‘carriage return.”

Qutput it.

Return to calling routine,

Clear OVFLO location.

Is the binary exponent negative?
No.

Yes. Multiply by ten until the
exponent is not negative.
Decrement decimal exponent.
Force a jump.

Compare the binary exponent to
$20 =32,

Equal. Convert binary to BCD.
Less than.

Greater than. Divide by ten until
BEXP is less than 32.

Force a jump.

Clear OVFLO

Multiply by ten.

Then normalize.

Decrement decimal exponent.

Test binary exponent.

Is it 32?7

Yes.

It’s less than 32 so multiply by 10.
It’s greater than 32 so divide.
Increment decimal exponent.

Test binary exponent.

Compare with 32,

Shift mantissa right until exponent
is 32.

Least-sigaificant bit into TEMP.
Increment exponent for cach shift
right.

Test to sec if we need to round
up. No.
Yes. Add onc to mantissa.

Jump te 32 bit binary-to-BCD
routine.

Rotate BCD accumulator right until
non-significant zeros are shifted
out or DEXP is zero, whichever
comes first.

Increment exponent for cach shift
right. Get out when DEXP =0.

70 COMPUTEl April. 1981 Issue 1.
Micrnproceggur Based Design 0B87 A5 20 l;gg ?B}SDN Has a nﬂ]n‘zero dig‘it been shifted
LD 0B89 29 OF 0. into the least-significant place?
(McGraw-Hill). 0BBB FO E9 BEQBRM No. Shift another digit, |
Of course, cach time the gggg g: BRO §g§ Oop_s. Th.t:sr: NOPs cover an
. : o ine carlier mistake.
binary number is multiplied by ten opgF EA NOP
or divided by ten the decimal expo- 0B30 EA NOP
nent is adjusted. Thus, we are left ggg; g{?% - ;‘s(}"{PCLDISP i P
1] H H 1$ routine simply clears the
;\Sgéﬂa -B ;:(:}?QZLE?:‘?: I]'DI;L%C::?OZS 0B95 A5 07 LDA MFLAG AIM 65 20-character display.
S " 0B97 FO 05 BEQ BRN If the sign of the number is minus,
ten digits) and a decimal exponent 0B99 A9 2D LDA $2D output a minus sign first.
in $0017. The rest of the routine is ~ 0BYB 20 A6 OF JSR OUTCH ASCII *“ - = $2D. Qutput
largely processing required to give character.
a reasonable output format. Since UBYE A9 0B BRN LDA $0B Set digit counter to eleven.
we don’t want to print a gr f g o STA TEMP
n't P group o OBAZ A0 04 BRI LDY $04 Rotate BCD accumulator left to
nOH'SIgﬂlﬁcaﬂt zeros, the BCD 0BA4 18 BRH CLC output most-significant digits
number is rotated right until all the 0BA5 A2 FB LDX $FB first, But first bypass zeros.
zeros are shifted out or the decimal gg:; %58 25 BRG }‘VO;- BCDN
H P g - A
f_l::gtonent is zero, whichever comes S 'm0 PR SRR BRE
: . OBAC 26 00 ROL OYFLO Rotate digit into OVFLO,
Next the routine starts ex- OBAE 88 DEY
amining the BCD number from the = 0BAF D0 F3 BNE BRH
left and skips any leading zeros. oggl Cé 003 DEg 10‘{5/1;_150 ?ccl:ﬂmm‘ lid'lg;t counter.
i fEm et 0BB3 A5 O LD s the rotated digit zero?
;Fhffji ‘}.’f ﬁf'“t i digit - ‘Iile 0BB5 FO Eb BEQ BRI Yes. Rotate again.
HELEIEL printed. Llicourse, it gppy 19 BRX CLC Convert digit to ASCII and
number is minus (a non-zero result oppBg 59 30 ADC $30 output it.
in location $0007) a minus sign is OBBA 20 A6 OF JSR OUTCH
printed. Next the decimal point is Ogsg A9 00 ;‘DA 300 o Clear OVFLO for next digit.
; e OBEF 85 00 TA OVFL
printed, and finally the exponent is (pc) 4004 LDY $01 OQutput the remaining digits.
printed in the form “E XX, OBC3 18 BRL CLC
Thus, the format chosen always OBC4 A2 $FB LDX $FB
has the decimal point to the right 0BC6 36 25 BRJ ROL BCDN,X Rotate a digit at a time into
of the significant digits, 3148159, Uzgﬁ E8 ;I:r};; R O\f’FL(l); then output it. One digit
= SEn 0BCY DO FB is four bits or one nibble.
E_l 6 for e:famplc. If you want scien SBCs B0 ROL OV}FLO
tific notation for non-integer results OBCD 88 DEY
you can modify the output routine. OBCE DO F3 BNE BRL
It's simply a matter of moving the 0BDO A5 00 LDA OVFLO Get digit.
decimal pgint_ The flowchart and 0BD2 C6 0B DEC TEMP Decrement digit counter.
0BD4 DO E1 BNE BRX
the comments Should. allgw ygu:ta O0BD6 A5 17 LDA DEXP Is the decimal exponent zero?
understand and modify the code. 0BDS FO 48 BEQ ARND Yes. No nced to output exponent.
UBDA A9 2E LDA $2E Get ASCII decimal point.
0BDC 20 A6 OF JSR OUTCH Output it.
OBDF A9 45 LDA $45 Get ASCII “E”".
OBE1 20 A6 OF JSR OUTCH
OBE4 A5 17 LDA DEXP Is the deeimal exponent plus?
OBE6 10 0D BPL. THERE Yes.
OBES A9 2D LDA $2D No. Qutput ASCII ¢ - "
OBEA 20 A6 OF JSR OUTCH
O0BED A5 17 L.LDA DEXP It's minus, so complement it and
OBEF 49 FF EOR $FF add one to form the twos
complement.
OBF1 85 17 STA DEXP
OBF3 E6 17 INC DEXP
OBF3 A9 00 THERE LDA $00 Clear OVFLO.
0BF7 85 00 STA OVFLO
OBFg F8 SED Convert exponent to BCD.
O0BFA A0 08 LDY $08
OBFC 26 17 BR1 ROL DEXP
OBFE A5 00 LDA OVFLO
$0C00 65 00 ADC OVFLO
0C02 85 00 $TA OYFLO
0C04 88 DEY
0C05 DO F5 BNE BR1

72 COMPUTE Apyil, 1081 Issue TI.

CLEAR TEN-
DIGIT BCD
LOGATION

LEFT 4 BITS
¢ NIBBLE),

[ERT 32
BITS TO BCR.

15
BEXP -2

| OUTEUT NHIBLE
. SEIFL AGC AND ROTATE
ACC = ACT* 1) LEFT INTO ANOTHER
NORMALIZE CARRY. NIBBLE
ADD BCD TQ DECREMENT
ey COUNTER
DECIMAL MODE.

DEGREMENT ¥

=

ACC = ATCIED
NORMALIZE

—
%_l

ACC - ACC* 10
NORMALIZE

QUTPLT E
CONVERT DEXP
TO SIGNED
BED NUSHIER

I

QUTFUT

AND SIG

ROTATE BCD MIN:

NUM RIGHT
A BDIGIT.

4]—‘ OUTPUT S0

AS CARRIAGE
R v

B0

INCREMENT

DECIMAL
EXPONENT

« ACCD
NORMALIZE

oLTeLY
CARRIAGE
RETURN.

<>

ROTATE ACC
REGHE UXTIL

BEXP - 32,
THEN ROUND. @
ouTeLT
MINUS
N

O

Figurc 1. Flowchart of the Floating-Point Binary to BCD Routine.

Aprd, 1981, Issue 1.

COMPUTE!

73

0C07 D8 CLD
0Co8 18 CLC
0C09 A5 00 LDA OVFLO Get BCD exponent.
0COB 29 FO AND $F0 Mask low-order nibble (digit).
0CoD Fo 09 BEQ BR2
QCOF 6A ROR A Rotate nibble to the right.
0C10 6A ROR A
0C11 6A ROR A
0C12 6A ROR A
0C13 69 30 ADC $30 Canvert to ASCII.
0C15 20 AG OF JSR OUTCH OQutput the most-significant digit.
0C18 A5 00 BR2 LDA OVFLO Get the least-significant digit.
0C1A 29 OF AND $OF Mask the high nibble.
0C1C 18 CLC
0C1D 69 30 ADCG $30 Convert to ASCIIL.
O0C1F 20 A6 OF JSR OUTCH
0C22 A9 0D ARND LDA $0D Get an ASCII carriage return.
0C24 20 A6 OF JSR OUTCH
0C27 60 RTS All finished,
Listing 4. Subroutine OUTCH For the AIM 65.

SO0FA6 20 00 FO
OFA9 20 72 OF
OFAC 20 60 OF
OFAF 60 RTS

OUTCH

JSR PRINT
JSR MODIFY

AIM 65 monitor subroutine,

See previous article in COMPUTE!

JSR DISPLAY Sce previous article in COMPUTE!

RTS

Too Much!

How can we tell you
about 200 products
in one advertisement?

Our new catalog gives detailed
descriptions of over 200 peripherals,
software packages and books. We
believe that t¢ make an intelligent pur-
chasing decision you need as much
information as possible. You need
more than can fit into a short ad. You
need screen photos of software, not
just a glowing description. You need
technical details about peripherais.

You'll find this kind of detail in our
new 48-page catalog. It's unique in the
small computer field. Best of all. it's
FREE.

Peripherals Plu

119 Maple Ave., Marristown, N.J 07980

Listing 5. A 32 Bit Binary-to-BCD Subroutine.

S0D67 A2 05 CONVD LDX §05
0D69 A9 00 LDA $00
OD6B 95 20 BRM STA BCDAX
0D6D CA DEX
OD6E 10 FB BPL BRM
0D70 F8 SED
0D71 A0 20 LDY §20
0D73 06 04 BRN ASL LSB
0D75 26 03 ROL NLSB
0D77 26 02 ROL NMSB
0D79 26 01 ROL MSB
D7B A2 FB LDX $FB
0D7D B5 25 BRO LDA BCDA X
OD7F 75 25 ADG BCDA,X
oD81 95 25 STA BCDAX
0D83 E8 INX
oDe4 DO F7 BNE BRO
0D86 88 DEY
0D87 DO EA BNE BRN
0D89 D8 CLD
0D8A 60 RTS

Clear BCD accumulator.

Zeros into BCD accumulator.

Decimal mode for add.

Y has aumber of bits to be
converted. Rotate binary number
into carry.

X will control a five byte
addition. Get least-significant
byte of the BCD accumulator,
add it to itself, then store,
Repeat until all five bytes have
been added.

Get another bit from the binary
number.

Back to binary mode.

And back to the program.

Odds
And Ends

are growing...Send in your
one ar two paragraph
programming hints o
Qdds and Endis.

/o COMPUTE!

PO Box 5406,
Greensiboro, NC 274C3

32K BYTE DRAM

[T

PROTRONICE

304 —= $i9.58

APPLE M. MODEM OWNERS
L}

S¥A SOFTAARE RGN ALFLACES YO

TISA. IRCLUDE $2,6¢ P0R S4H
(702} 1e1=6331

157 F, IROFICANA SUITZ Ta815
Las TREAS, NEVADR o159

df”

B Dysan
CORPORATION

Solve your disc problems, tuy 100% surface

testad Dysan diskettes. All onders. shipped

froen stock, within 24 bouws. Call 10ll FREE
(B00) 2354137 for prices and Information.

Visa and Master Card socepted. All orders
sent postage paid

PACIFIC
EXCHANGES
100 Footh:lt Blvd
San Lus Obispo. CA
93401 (In Ca! call
(805) 5331037)

34 COMPUTE!

June, 1981, Issue 13,

A Floating
Point
Addition And
Subtraction
Routine

Marvin L De Jong
The School of the Ozarks
Pt. Lookout, MO

L. Introduction

In previous articles in COMPUTE! we have de-

scribed:
1) A program to convert a decimal number
from the keyboard into a floating-point binary
number,

Except for a few JSR and JMP
Instructions, the routine is
relocatable. It would not be
difficult to put all of these
routines in PROM.

2) A program to convert a floating-point
binary number to a decimal number and
output the number.,
3) A program to multiply two signed floating-
point binary numbers,
4) A program to divide two signed floating-
point binary numbers.
In this article we give a program that adds or
subfracts two signed floating-point binary numbers.
The programs complete a four-function package.

1l. The Subtraction And Addition Routines
As before, three accumulators are used. The
contents of accumulator A (ACCA in the program)
are subtracted from the number in accumulator B
(ACCB), and the result is stored in the result (RES)
accumulator. Finally, the answer is moved back to a
modified accumulator A that can be used by the
output (tloating-point binary to BCD routine)
program. In the case of the addition program, the
numbers in the two accumulators, A and B, are
added rather than subtracted.

Accumnulator A occupies locations $0000

through $0003 with a guard byte at $0004. The
byte at $0000 is the most-significant byte. Accumu-
lator B occupies locations $0020 through $0023
with a guard byte at $0024. The result accumulator
is at $0010 to $0014. When the calculation is
finished the answer is moved to the accumulator
used by the floating-point binary to BCD routine
to output the answer. Our accumulator architecture
is identical in the four arithmetic function pro-
grams.

Here is the algorithm. It makes use of the fact
that subtraction can be accomplished by changing
the sign of the subtrahend and then adding. From
algebra we know

a-b=a+(-b).

1. Entry point for subtraction. To subtract, com-
plement the sign byte (ACCS) of A, then add.

2. Entry point for addition. Rotate smaller number
right until exponents are the same
(ACCX=BCCX).

3. Are the signs the same? Yes, goto 4. No, go to 8.
4. Sign of result = sign of addends.

5. Add the numbers.

6. 1f there is a carry, rotate right one place and
mcrement exponent.

7. Go to round routine (part of multiplication Hst-
ing).

8. Form the twos complement of the negative
number.

9. Add the numbers.

10. If carry results, then the answer is +. Go to 7.
11. If no carry results, then the answer is — Form
the twos complement of the result. Go to 7,

These add and subtract routines use the same
round instructions that the multiplication routine
used, starting at DETOUR ($0C7D), and those
instructions are not repeated here. Thus, you will
find a JMP DETOUR instruction near the end of
the routine. Except for a few JSR and JMP instruc-
tions, the routine is relocatable. It would not be
difficult to put all of these routines in PROM. A
driver program to test the routines is given in
Listing 2.

Listing 2. An Input/Output/Add (or Subtract)
Calling Program.

$0050 20 00 OE JSRINPUT Call the BCD to Floating-Point
Binary Routine.

$0053 30 B0 OF JSRSUBI Call the subroutine to modify
the accumulator.

$0056 20 CO OF JSRSUB2 Transfer ACCA 1o ACCB.

$0059 20 00 OE JSRINPUT Get the second number.

$005C 20 B0 O0F JSRSUBI1 Fix the accumulator again,

Subtract the second number
from the first.

JSROUTPUT Output the resultusing the
Floating-Point Binary to BCD
Routine.

$005F 20 00 09* JSRSUB

$0062 20 00 0B

$0065 00 BRK
*Change to 20 06 09 for addition.

36 COMPUTE June, 1981, Iksue 13.

SOURCE FILE: SUBRDD

dC7D: 1 DETOUR EBU 4BC7D

oez7: 2 BCCB EQU $@827

2ee5: I RCCX EOU 0005

Ba7: 4 ACCS EQU 0087

Peze: S RACCB EQU 0020

22252 & BCCX EQU +@@25

aeie: 7 RES EGQU 42018

oeaea: € ACCA EQU 0000

————— NEXT OBJECT FILE NAME IS SUBRDD.DBJ@

a9a0: 9 DORG <0500

2922:R5 a7 18 SUB LDA ACCS SENTRY PDINT FOR SUBTRACTION
@9202:49 FF 11 EOR #%FF

@304:85 @7 iz STA ACCS

@A9@E=R5 @5 12 ADD LDA ACCX SENTRY POINT FDR ADDITION
@39@e:Cs 23 14 CMP BCCX sCOMPARE EXPONENTS
@B9ARFB S4 15 BER OPRAT

a9ac:3e z2Aa i BMI ADJA

Q90E:=AZ FB 17 LDX #%FB

2918:R2 @5 ig LDY &85 sCHECK FOR ZERDO MANTISSA
@312:B3 25 19 BR1 LbA ACCB+S, X

@914:D@ @€ 2@ BNE ROTB

P216:88 21 DEY

2917:F2 10 22 BE® ZEROB

B919:EB 2= INX

291A:D? FE 24 BNE BR1

P91C:AZ FR 23 RATE LDX #$FB sROTATE MANTISSA RIGHT
P91E: 18 26 cLC SAND INCREMENT EXPONENT
@91F:7& 25 27 BR2 ROR RCCB+5. X

8921 :E8B 28 INX

9922:D@ FB 23 BNE BRz

B924:EE 23 Ia INC BCCX

292€: 1B 31 CLC

@927:9@ DD 32 BCC ADD

2929:R0 @S 3% ZEROB LDY 428

B92B: RO @8 24 LDY #B5 MY MISTAKE. WHO NEEDS TWO LLDY'S?
@92D:=AZ FB 35 UP LDX #H$FB $MIGHT CATCH A COPYRIGHT VIOLATOR?
@9ZF:7E @3 I& HERE ROR ACCA+35. X

B931:ES 7 INX

@932:D0 FB I8 BNE HERE

asz4:88 39 DEY

@935:D@ FE 48 BNE UP

@937:60 41 RTS

@93E:ARZ FB 42 ADJA LDX #%FB sCHECK FOR ZEROD MANTISSA AGAIN
@9ZA A0 BS 43 LDY #@5

@9=C:BS @5 44 BRI LDA ACCA+S, X

@9ZEDO 06 43 BNE ROTA

294B:88 4E DEY

@941 :FD @F 47 BE®@ ZERDA

@943 EB 48 INX

0344:D@ FE 48 BNE BR3

P945:R2 FB 58 ROTA LDX #%FB SROTATE MANTISSA RIGHT
2948: 18 o1 CLC sAND INCREMENT EXPONENT
@949:76 @S 52 BRa ROR ACEA+S5, X

094B:EE 53 INX

@94C:D@ FB o4 BNE BR4

@94EEE @5 95 INC ACEX

@350:90 B4 SE BCC ADD

@352:A5 25 57 ZEROA LDR BCCX sADDEND IS ZERO

@954:85 @5 58 8TA ACCX

@356:A2 @3 39 LDX #8283

@358:B5 20 6@ BACK LDA ACCB:X

@95R:95 @1 61 STA ACCAR+1. X

38 COMPUTE! June, 1981, ssue 13,

@95R:95 @1 E1 STR ACCA+1,X
B95C:=CA g2 DEX

@95D:1@ F9 &3 BPL BACK
QaSF:E@ B4 RTS

09E@:AS @7 &5 OPRAT LDA ACCS sCHECK THE SIGNS OF THE ADDENDS
B9EZ:CS 27 EE CMP BCCS
P9e4:D@ 18 E7 BNE OPPOS
B9EE:20 DC B9 EE JSR ADDNUM $ADD NUMBERS OF LIKE SIGN
@9e9:9@ i1 E9 BCC BRE
B9EB:AS @S 70 LDA ACCX
@9eD1E9 00 71 ADC #09
BIEF:B5 @5 2 8TA ACCX
2971:5@ @1 7= BYUC BR6E
2973x:008 74 BRK

P974:A2 FB 75 BRE LDX #4FB
97638 76 SEC

@977:76 15 77 BR7 ROR RES+35,X
@979:E8 78 INX

@97R:D0 FB 79 BNE BR7
@97C:4C 7D @C 8@ BRE JMP DETOUR
PI7F RS @7 81 OPPOS LDA ACCs sCOMPLEMENT THE NEGATIVE NUMBER
P9B1:FB 40 82 BE@ CMPB 3THEN ADD
P9EF:AZ B4 ez LDX #@4
2985:B5 02 84 BR9 LDA ACCA,X
D9E7:49 FF es EOR #%FF
2989:95 ee ee STA ACCA, X
@B9EB:CA 87 DEX

@98C:10 F7 28 BPL BRS
D9EE:AD B4 29 LDY #24
#9%@:328 1] SEC

@991 :B5 @0 91 BRi@ LDA ACCA. X
9993:69 20 g2 ADC #00@
29395:95 @0 93 STA ACCA, X
@937:CA 94 DEX

2998:10 F7 a5 BPL. BR18
@93R:28 DC @3 9€ FORTH JSR ADDNUM
299D:90 @& 97 BCC BR11
@299F:A9 B0 9g LDA #0060
B9A1:85 B7 99 STA RCECS
@9A3:F@ 1B 128 BER! BR14
B9AS:AS FF i@1 BRii LDA #$FF
@9A7:85 B7 1@2 STA ACCS
@9AS:AZ B4 pLvss LDX #3004
@9AB:BS 10 1@4 BR12 LDA RES,X
@3ARD:43 FF 185 EOR #$FF
@9AF:93 10 12 5TA RES,X
2381 :CA 127 DEX

@9pz:1@ F7 i0e BPL BR12
@9B4:AZ B4 129 LDX #@4
P9BE:3E 110 SEC

@9B7:BS 10 111 BR13 LDA RES, X
29BS:ES 00 11z ADC #00
@39BB: 35 1@ 113 S5TRA RES.X
@9BD:CA 114 DEX

@9BE: 18 F7 115 BPL. BRIZ
@ac@:4C 7D OC 116 BR14 JMP DETOUR ;G0 TO RODUNDING ROUTINE
@39CI=AZ B4 117 CMPB LDX #24
@3CS:BS 2@ 118 BR1& LDA ACCB, X
BAC7:49 FF 119 EOR #&FF
@39C9:95 20 120 STA ACCB: X
@9CB:CA 121 DEX

@3CC:18@ F7 122 BPL BR1&

A0 COMPUTE! June, 1981 Issue 13,

@9CE:=A2 @4 123 LDX #@4
P9pa:38 124 SEC

@SD1:BS 20 125 BR1S5 LDR ACCB.X
@9D3:69 20 126 ADC #00
a98D5:95 20 127 STR ACCB: X
@9Dn7:CA ize DEX

@9DE:10 F7 129 BPL. BR135
@3DA:I0 BE 138 BMI FORTH
@39DC:A2 @4 131 ADDNUM LDX #04 sSUBROUTINE THAT DOES THE ADDITION
@9DE: 18 132 CLC
@9DF:=BS 0B 133 KCAB LDA ACCA: X
@9E1:7S 20 134 ADL ACCB: X
@9EZ:95 10 135 STA RES. X
@9ES:CA 138 DEX

@9EE:10 F7 137 BPL KCAB
PIEL: 60 138 RTS

sk SUCCESSFUL ASSEMBLY: NO ERRORS

0@ ACCA 2@ ACCB @7 RCCS @5 ACCX
@90E ADD @9pC ADDNUM @29IZ8 ADJA 9558 BALK

27 BCCS 23 BCCX 2991 BR1B @P9AS ER11
B9RE BR12 @3C@ BR14 9912 BRI @9BT BRI
@3p1 BR1S @SC5 BR1E B9iF BRZz @93C BRI
2949 BR4 @974 BRE @377 BRY 237C BRE3
2985 BRS @sCI CMPB @C7D DETOUR @99Aa FORTH
@92F HERE @9DF KCAR @97F OPPOS B=6a ORF2AT

1@ RES 2948 RDTA p91C ROTR 70900 SUR
292D UuP @952 ZEROA @328 ZEROR

0 WE HAVE THE LOWEST POSSIBLE \
FULLY WARRANTEED PRICES. I YOU

’
- | PLus [we have a full complement 207
of Radio Shack software. ASKI
Here are just a few of our fine offers... “gﬂfl‘gy - ' o1
= H % ynx Dire onnec 2

call toll-free for full information. COMM 80 inferface 159 95
COMPUTERS Color Computer 16K Chaofterbox Interface 239

Model Il 64K $3375 wiextended basic 489 Telephone Interface II 1469

Model Il 4K LEV 1 599 Pocket Computer 199 PRINTERS

Model Il 16K 859 VIDEQTEX 320 Line Printer IV 849

Model Hll 32K ©981.50 APPLE 48K only 1279 Daisy Wheel Il 1695
+Model Il 32K 915.50 ATARI 800 16K 78¢ Line Printer Vi 999

Model Il 48K 1104 PERIPHERALS Line Printer Vil 315
+ Model Il 48K 972 Expansion interface 0K 5249 Centronics 737 737

Model IIl 32K Expansioninterface 16K 359.95 EPSON MX80 499

2 Disc & RS232c 2149 +Expansioninterface 16K 30550 DISK DRIVES

Color Computer 4K 310 Expansion Interface 32K 469.95 Model il 1-Drive M2

Color Computer 16K 43995 +Expansion Interface 32K 362 PERCOM TFD 100 389
+ Color Computer 16K 366.50 16K RAM NLE.C. 200 N.5. chips 39 TEAC 40 Track RELY)

oDy Eondedwoncy call ToLL FREE 1-800-343-8124

PLUS real back-up warrantees —

Pure Radio Shack equipment warranteed at any Radio

Shack store or dealer. Factory warrantees on Apple and

Atari equipment. Other equipment carries manufacturer's

warranty or Compuler Plus 180 day extended warranty.

Combined warrantees carry Compuieerlus 180 day war- 245A Great Road

ranty or orlginal manutacturer's warranty. Lileton, MA 014560

\ 617-486-3193 ok

Prices subject to change witheut nelice TRS-BO is a registered fracemarx of Tandy Corp

58 COMPUTE!

AugQust. 1981, lssue 15

A Floating-
Point Division
Routine

Marvin L De Jong

Department of Mathematics-Physics
The School of the Ozarks

Pt Lookout, MO

I. Introduction
In three previous articles in COMPUTE! we
described:

1} a program that converts a decimal number
(with a sign and an exponent) to a floating-
point binary number (COMPUTE! #9)

2) a program that converts a floating-point
binary number to a decimal number
(COMPUTE! #11)

3) a program that multiplies two signed
binary floating-point numbers
(COMPUTE! #12).

In this article we describe a program that divides
two floating-point binary numbers. Most of the
programming described in this series has been
relocatable allowing the user to move the programs
or to put them in EPROMs with relative ease. Fur-
thermore, the routines that were used to input and
output the numbers can usually be found in a
menitor, so that most of the code should be eastly
adapted to anyone’s machine.

ii. The Division Routine

Just as the multiplication routine does, the division
routine uses three accumulators. The contents of
accumulator A (ACCA) is divided info the contents
of accumulator B (ACCB), and the quotient 1s
stored temporarily in the result accumulator (RES)
before the answer is moved back to the accumulator
used by the output (floating-point binary to BCD
routine) program.

Accumulator A occupies locations with ad-
dresses $0000 through $0003 with the most-signifi-
cant byte in location $0000. The mantissa of the
divisor is located in accumulator A. Location $0004
is used as a guard byte, permitting a 34-bit division
before rounding the final answer to 32 bits. Thirty-
two bits gives an answer that is accurate to approxi-
mately nine decimal digits. Accumulator B occupies
locations with addresses $0020 through $0023 with
a guard byte at location $0024. Accumulator B
contains the dividend mantissa. The exponent and

sign locations are the same as for the multiplication
routine described earlier. The quotient is moved
into RES at locations $0010 10 $0014 as it is being
calculated. When the calculation is finished, the
quotient is moved to the accumulator that is used
by the Hoating-point binary to BCD routine to
output the answer. The accumulator architecture
1s exacily the same as for the multiplication routine
described in the previous article.

The division algorithm is almost identical o
the one you used in elementary school to do long
division. Try one of these problems in decimal and
then in binary if you want to understand the algo-
rithm. Basically, it proceeds as follows:

L. Set COUNT =34=$§22 10 do a 34 bit division.
2. Calculate DIVIDEN — DIVISOR. If the carry
tlag is set then the DIVIDEND is greater than
the DIVISOR, go to (3). Otherwise go to (4).

3. Replace the DIVIDEND with DIVIDEND —
DIVISOR.

4. Shift the CARRY leftinto the LSB of the QUO-
TIENT.

5. Shift the new DIVIDEND left. (This is analo-
gous to “bringing down” the next digit.)

6. Decrement COUNT. If COUNT is not zero,
go to (2), otherwise go to (7).

7. Normalize and round the quotient.

As in the case of multiplication, the sign of the
result is found by forming an exclusive-or with the
signs of the divisor and the dividend. Recall from
algebra that the exponent of the quotient is found
by subtracting the exponent of the divisor from
that of the dividend. If the exponent exceeds 127
or is less than -128, the program exccutes a BRK
instruction. It is lefi to your imagination what you
want your BRK routine to do for underflow or
overtlow. In my case the program simply jumps to
the monitor. If the divisor is zero, the program also
executes a BRK instruction. If the dividend is zero,
the entire division routine is bypassed and
the correct answer of zero is placed in the
accumulator.

One final important point needs to be made.
This division routine uses the same normalize and
round instructions that the multiplication routine
used. These instructions started at DETOUR
($0C7D) in the previous article and are not repeated
here. Thus, you will find a JSR DETOUR instruc-
tion just before the routine ends.

In listing 2 you will find a short program to
test the division routine. It also makes use of the
subroutines published in the previous article in this
series. In fact, it differs only in that it jumps to the
division subroutine rather than the multiplication
subroutine. It duplicates almost exactly Listing 5 in
“A Floating Point Multiplication Routine,” and you
may wish Lo refer to that article for details.

60 COMPUTE!

Augast, 1981, ssue 15

Listing 1. The Floating-Point Division Routine.

30000 = ACCA; Most-significant byte of the mantissa in accumulator A.
$0005 = AGCX; Exponent foraccumulator A.

$0007 = ACCS; Signbyte foraccumulator A,

$0010 = RES; Most-significant byte of the quotient accumulator.
$0020 = ACCB: Most-significant byte of accumulator B, the dividend.
$0025 = BCCX; Exponentof the dividend.

$0027 = BCCS; Signof the dividend.

$0A70 A5 00 START LDA ACCA Isthe divisor zero?

0A72 DO 01 BNE BRI No.

0A74 00 BRK Yes.

0AT75 A5 20 BR1 LDA ACCE Is the dividend zero?

0A77 DO 05 BNEBR2 No.

0A79 A9 00 LDA #00 Yes. Make the answer zero.

0A7B 85 01 STA ACCA+1

0A7D 60 RTS Then return.

0A7E A5 07 BR2 LDA ACCS Calculate the sign of the quotient.
0ABD 45 27 EOR BCCS

0AB0 45 07 STA ACCS Return sign to answer location,
0AB4 38 SEC Now calculate the exponent.

0ABS A5 25 LDA BCCX

0A87 E5 05 SBCACCX Subtract exponents when dividing.
0A89 50 01 BVCBR3 Overflow or underflow?

0ASE 00 BRK Yes.Goto BRK routine.

0ABC 85 05 BR3 STAACCX No. Put result into answer lacation.
0ASE 18 CLC

0ABF A2 FC LDX #$FC Both the mantissa of the divisor and
0A91 76 04 BR4 ROR ACCA+4,X the mantissa of the dividend will now
0A93 E8 INX be shifted one bit to the right. It
0A94 DO FB BNEBR4 justmakes the division routine easier
0A96 18 CLC to write.

0A97 A2 FC LDX #SFC

0A99 76 24 BR5 RORACCB +4.X

0A9B E8 INX

0A9C DO FB BNE BR5 So far so good. Next we will clear
GA9E. A9 00 LDA #00 the locations to store the answer.
Q0AAD A2 04 LDX #04

0AAZ2 95 10 LOOP STARES.X

6AA4 CA DEX

0AA5 10 FB BPLLOOP Answer locations cleared.

GAAT A0 22 LDY #%$22 Bitcount = $22 = 34, Startdivision.
0AA9 38 CIRCLE SEC

0AAA A2 04 LDX #04 Start by comparing divisor to dividend.
0AACB5 20 BR6 LDA ACCB,X Is the dividend greater than divisor?
OAAEF5 00 SBCACCAX

0ABO CA DEX

0AB1 10 F9 BPL BR&

0AB3 90 0B BCCBRS No. Then puta zero in the quotient,
0ABS A2 04 LDX #04 Yes. Subtract divisor from dividend
0AB7 B5 20 BR7 LDA ACCB, X and use the result as the new

CABO F3 00 SBCACCA X dividend. The carry flag will be
0ABB 95 20 STA ACCB,X setafter this operation, and it

0ABD CA DEX will be moved into the quotient.
0ABE 10 F7 BPL.BR?

0ACO A2 04 BRS8 LDX #04 Here is where the carry flag gets
0AC2 36 10 BRSY ROLRES, X putintothe quotient.

0AC4 CA DEX

0AC5 10 FRB BPLBR9

0AC7 AZ 04 LDX #04 Now rotate the new dividend left.
0ACO 18 CLC

0ACA 36 20 BRI10 ROLACCB,X

0ACC CA DEX

0ACD 10 FB BPLBRI10O Mission accomplished.

0ACF 88 DEY So decrement the bit counter.

0ADO DO D7 BNE CIRCLE Then branch backif it's not zero.
0AD2 A0 00 LDY #00 Actually, you don’t need this instruction.
(AD4 A5 10 BR11 LDA RES Here we normalize the mantissaand
0AD6G 30 0B BMIBR13 adjust the exponent forall the shifting
0ADE 18 CLC done earlier.

0ADY A2 04 LDX #04

&2

COMPUTE!

August, 19681 Issue 15

0ADB 36 10 BRI12 ROLRES.X
0ADD CA DEX
OADE 10 FB BPLBRI12
0AE0 C8 INY

0AElI DO F1 BNEBRI1
0AE3 84 0B BRI13 STY TEMP
0AE5 A9 07 LDA #07
0AE7 38 SEC

0AE8 E5 0B SBCTEMP
0AEA 18 CLC

0AEB 65 05 ADCACCX
OAED 50 0l BYCBRI14
0AEF 00 BRK

QAF0 85 05 BRI14 STA ACCX
0AF2 20 7D 0C JSRDETOUR
0AF5 60 RTS

Increment shift counter.
Branch back until mantissa is normalized.
Calculate the exponentadjustment.

Overflow or Underflow?

Yes.

Final resultinto exponent.
Round and final normalization in
multiplication routine.

Listing 2. An Input/Output/Divide Calling Program.

Call the BCD to Floating-Point Binary Routine.
Call the subroutine to modify the accumulator.
Transfer ACCA to ACCB.

Get the second number (divisor).

Fix the accumulator again,

Divide the first number by the second.

Convert the result to BCD and output it.

Try another pair of numbers.

$0050 20 00 OE AGAIN JSRINPUT
0053 20 BO OF JSRSUB1
0C56 20 CO OF JSRSUB2
0059 20 00 OFE JSRINPUT
003C 20 B0 OF JSRSUBI
005F 20 70 0A JSRDIVIDE
0062 20 00 OB JSR OUTPUT
0065 4C 50 00 JMP AGAIN
TRS-80 Heath H-3

e Model EP-2A-79
EPROM Programmer

PET & APPLE o AIM-65 ¢ KIM-1 » SYM-1 OHID SCIENTIFIC

WC-

fru

2550, 6809 based systems.

EPROM type is selected by a personality module which plugs into
the front of the programmer. Power requirements are 115 VAC
50760 Hz. at 15 watts. It is supplied with a 36-inch ribbon cable for
connecting to microcomputer. Requires 1'% [/O ports. Priced at
$169.00 with one set of software. (Additional software on disk and
cassette for various systems.} Personality modules are shown below.

PariNo. Programs

PM O ™S 2708

Pyl TI42I08.
PM 2 2732

M3 T™S 2716

PM4 ™S 2532 ;

PM5 T™S 2516, 2716, 275

PM R MCMoB764

Optimal Technology, Inc.
lue Wood 127, Earlysville, Virginia 22936
Phone (804) 973-5482

ATARI

MATHEMATICS, BASIC SKILLS
EXPLICITLY PRODUCED EXERCISES IN ARITHMETIC
For use with *PET/2040 Disk Drive/2022 or 2023 Printer

Computer pragrams designed for use by the classraom teaches as a primary
source of exersises in mathematies, basic skills. Through simple question and
answer, and with the use of only one computer system, a teacher may satisfy
all individ, in-class and h k req for drill in arithe-
metic. Students work directy upon exercise sheets. Difficulty level is easily
adjusteble. Answers are always provided. 23 programs included, covering
integers, degimals, fractions, percent and much more.

ON DISK $99.99 !

ALGEBRA
EXPLICITLY PRODUCED EXERCISES IN ALGEBRA

Sixteen programs in linear and fractional i}
quadratics, signed and complex number arithmetic.

ON DISK $99.99

{Arizana residents, please add 4% sales tax.)
Please add $1.50 for postage and handiing.

T'AIDE SOFTWARE COMPANY
P.0. BOX &5
EL MIRAGE, ARIZONA 85335

~ Inguiries lnvited -
i
“PET it a trademark of Gomraodare Business Machiees. Toc.

Cclober. 1981 ssua 17

COMPUTE! 165

A General
Purpose
BCD-To-Binary
Routine

Marvin L De Jorg

Department of Mathemalics-Phvsic
The Schoot of ihe C
Pl Lookout MO

=

A number of voutines have been published '
that will convert either a two-digit number ora
four-digit numhcl in BOCD code toabinary number,
and Butterfield ' has published a routine 10 handle
a six-digit BCD number. The routine described
here can he easily modified o bandle any nunber
of BCD digits. It is a 6302 assembly I"mgudqe
interpretation of an algorithm found in Peatman’s®
book. The BED-to-hinary routine assumcs its

importance from the fact that human beings usually

input numbers to a computer in a decimal repre-
sentation. A number of scientific instruments have
BCD outputs that may be interfaced to a micro-
computer, requiring some kind of conversion
routine before the data trom such a device can he
processed. Finally, if you want to interface some of
the calculator chips 1o a microprocessor in order to
do more complex arithmetic, you will very likely
need a BCD-to-binary routine somewhere in your
software. A 6302 assembly language routine w go
the other way (binarv-1o-BCD) can be found as a
subroutine in reference six at the end of this
article.

The BCD-to-binary routine is based on a
familiar technique for converting a base-ten

number toa base-two number. The decimal number

15 successively divided by two, and the remainders
are noted as either a ene or a zero, Each division
gives the next more significant binary digit or bit,
Example | illustrates the process.

Example 1. Convert 59,,, to a binary number.
Solution: Successively divide 59,.,, by two, with the
divisions beginning from the right and procceding to

the left.

0 1 3 7 14 29
21 23 27 214 229 259

9 2 6 14 28 38

1 1 1 0 1 1
59,.,=111011,,,,

Referving o Example | it can be seen that the
algorithim requires that the BCD numiber be suc-

cessively divided by two and the remainders are
saved o become the binary number. The first
division remainder is the least signilicant bit, while
the remainder from the last division is the most
signilicant bit. If in Example 1 we wanted o convert
39, toan cight-bit binary number, namely QU111
1011, we would simply perform two more divisions
than shown, providing the two leading zevos in the
cight-bit representation.

If vou are mildly familiar with BCD numbers
vou will recall that each digit requires four bits tar
one nibble). So an eight-digit decimal number
requires four memory locations. Conversely, four
memory locations can represent a decimal number
as large as 99999949, which is more easily expressed
as 1071, Question: How many bits are needed o
represent a given number of decimal digits? Let N
be the largest number of decimal digits that we
need for our pnm(ulm application, so the largest
devimal number is (10N-1). Let n be the nlll]]])(‘l of
Linary digits (bits) needed 1o represent the same
number, Bv anatogy, the largest binary number
that can be represented by n bits is (2"-1). Since we
w 1\11 to represent the same number, we may equate
(10™1) and (2"-1) and then solve forn, T hus, with
some mathematical magic, the answer o the ques-
ton posed above is

N =N/oyg 2=N/0.30103
where a base ten logarithm is implied.

I N =8 then n=26.6 which becomes n=
when rounded upward (fractional numbers of bis
are not allowed as answers for this problem).
Twenty-seven bits can be handled quite nicely by
four bytes, bt please do not ereate your own theorem
that the number of memory locations needed o
represent a number in binary is equal to the number
of memory locations to represent the same number
in binary-coded decimal (BCD). Use the equation,
and be sure 1o allocate enough memorv o handle
the number in cither binary or BCD representa-
tions. Note that, in the program described by Listing
1, we assume an eight-digit decimal number is
being converted to a binary number that will also
be stored in four memory locations, The program
is casily modified (o handle situations where the
number of memor v locations needed for the BCD
number is different than the number of memory
locations needed for the binary number. Using the
immortal words of many authors, “we leave this
problem for the student.”

So we know how many memory locations to
assign 1o represent the number, and we have a
simple algorithm (divide by two and store the
remainder) (o perform the conversion. Enter some
corollary to Murphy’s Laws: “nothing is as simple
as it seems.” Dividing by two is neat and easy for a
binary number: successive shifis 1o the right (LSR
or ROR) give successive divisions by two. Dividing
by two is considerably more complex for a BCD

i COMPUTE Cctoner 1991, tssuz 17
number. Fortunately, Peatman® BCDNUM = $0000; I}n.vs(-:u.!dr.c;:«i ofll:; B.Cl;nu:br ml;,glc)m.w.-lu-u 'luAhi::lr_;/.l'lzm
R o s 11l most-significant digit of an ¢ BCD number is in the high-
has pom.tui outa few tricks that order nibile of BCHNEIM.
accomplish division-by-two for a BINUM =$0010; Bascaddress of thebinary number whose most-significant byte
RCD number. willbein BINUM.
- i S T BYTE = §FC; Twos comiplement of the number of bytes needed 1o hold
byt r:_“ Ughl‘ bllt! ‘:“ghh ”]l“l the BCD number: inthis program four bytes (30000 - $0003)
wie of memory that represent a areused.
})
binary numberare 1,2, 4, 8, 16, $0D00 D8 START CLD Clear decimal mode.
32, 64, and 198, proceeding from aDol A9 00 LDA #00. Clear locations that will
the right-most bit to the left-most ggﬂ; ,?52 f: BACK :;{.’Jfg?g&+4 x hiofd the bipary number;
bit. Clearly, shifting the number 1o 0D07 EH INX
the I‘ighl divides each bit wciglu, by uDgB DSEI FB BNEBACK Locations have been
Tl e . 3 s 5 0DO0A 3 SEC cleared.
two. l,h‘“ 15 “fh) an LSR oran ODOB A2 FC THERE LDX #BYTE Rotate the binary namber
ROR instruction may be used to 0DOD 76 14 RETURN RORBINUM+4X right, moving the remainder
divide a binary number by two. gg‘]‘g l];% - g;‘; RETURN flr‘mrr: the BCD divisioninto
e P WO i e _ E the hinary number.
However, if the same memory aD12 RO 2R RCSOUT 1fthe cirry is sel, the conver-
location represents a BCD number, aDI4 A2 FC LDX #BYTE sion is complete.
then the bit weights are 1, 2,4, 8, 0DI6 76 01 AGAIN ROR BCDNUM+4.X Start the division-by-two by
10,20, 40, 80.consequently s 10 5 TN
shift-right or a rotate-right instruc- OD1B 08 PHP flag so suve it on the stack.
tion results in division-by-two only gg}t ;\82 FG ;}l:)cx #BYTE Teslfbil!lll'l‘(' of eachbyteto
7 e . . s e . SEC see if a one was shiftedin,
for bits zevo, one, two, three, five, ODIF B3 04 LAKE LDA BCDNUM +4.X
six, and seven. Shifling bit four D21 29 08 AND #08 If 5o, subtract three.
(with a weight of ten) to the right ggi; :f' g: EEQ §g3§3m - Ifnot, Eocorrmion needed.
Pt Py ot : . -] A +4,X sotesthitsevenofcachbyle
¢ h.ll‘lgt‘_.\ ns “Elg}"_ 1o t'lghl, F‘Ighl 1S D27 E9 03 SBC #03 to see if a one was shifted in.
three more than five, the number D29 95 04 STABCDNUM +4.X
you usually get when you divide guzs n; 0}1 FORWD LDA BC‘.;JNUM+4.X Herebit seven is checked,
ten by two. So, the trick to dividing ug;? E‘o 35 ;?é’:;g‘n No correction
a BCD number by two is to shift 0D31 BS 04 LDA BCDNUM+4,X Correction: subtract 30,
right or rotate right as usual, but if 3923 ;9 b g_‘li_c #250
a one is shifted from bit four 1o bit 03; E‘; ARND IN‘;B DNUM +4.X
three, then you must subtract three 0D38 DO ES5 BNE LAKE Repeat farall N bytes.
from the shifted-right result to get :g:g i’; - glc-l': FHERE f*cll;h: carry *_m"k because it
. P 1 g atte t A & o] AL 2] held the remainder,
the correct answer. That's it folks. I OD3D 90 CC BCC THERE Goback and put it in the
wish I could say it was my idea, but OD3F 60 ouT RTS binary number. Then finish. ©
I found it in Peatman’s” book.
1 the BCD number is to be represented by
several bytes, an added complication occurs. Bit
seven in the least-significant byte has a weight of
80. Bit zero in the next most significant byte has a
weight of 100. Clearly, shifting 4 one from bit zero
g ¥ & ATTENTION! AIM 65 USERS

of this byte to bit seven of the least-signilicant byte
does not result in a division-by-two because 100/2 is
not 80. However, if we subtract 30 alter the shift
we do get the correct answer. When performing a
divide-by-two operation on a multi-byte BCD
number, each byte in the number must be tested to
see if a one was shifted into either bit three or bit
seven, and then the appropriate remedies must be
applied if the tests are positive. In short, if 2 onc is
shifted into the most-significant bit position of any
of the N nibbles used 10 represent the N digits in
BCD, then the nibble must be corrected by sub-
tracting three.

One other point remains to be made. From
Example 1 itis clear that we ave interested int the
remainder after division-by-two. When dividing by
two, the remainder s either zero (even dividend)
or one (odd dividend), The remainder will be
found in the carry flag after a shift-right operation,

AKD OTHER 6500 MICAO PROCESSORS
Convert Your &5 Into A More Useful Tool With The New And Reasonable

VD640 VIDEO INTERFACE

+Uses 2K 2716 or 1K
2758 € Prom

*1K Ram

+Pin compatbie w:th
AIM gxgansion cor-
nectar Can be pr
adapled ot Kim& Swm.

+8ingle +5veil from
connactor,

#Heverse vides & swilch
1o reverse field

sUpper & lower case
characlers.

+Uses slardard TV, with
ophonal modulalo®

a0t « S Tm - Save Mongy
Full operating insiructons and
schemanc with each kit
VDA Si kscrenned P.C boars
w parts st only £ 19.00 each
i VD640 Kitinc's. Siksereened P G
buard wih sockets, al cemponents
and Programmend Epiom (P C
Corneclor Board & mod. o"l }
9.00 each
* 'WD640 Fully nssembied mlh sockets
all cemponents and conneclars.
tested and guarantesd 1 year
+Component layoul {modulator aphonal) 149.00 each
siksereened on P C $"Opuona R F Modulator {aliows use
Beard. olsd TV $39.00
Cphonal P.C Connestor Board
1500

#7x11 Dot Format

40 characters X 16 ines

32 special graphics
characlers.

«Scftware switch 1ot pro
grammate hardware
sereen flashing

#Uses Motorola MCBB45
CATC

*Operating system in
Eprom inleracts wih
AIM monitot

Insert guanhty wanted in box nextto kil desired and manl with check or mcﬂey orgerto
Sieeea Pacitc: 1112 Welington Dr . Modesto, CA 85350 (Cahf Residents add 6%
sales lax)} {Alow 4 10 6 weeks delivery.)

